arduino_code.ino 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392
  1. #include <AccelStepper.h>
  2. #include <MultiStepper.h>
  3. #include <math.h> // For M_PI and mathematical operations
  4. #define rotInterfaceType AccelStepper::DRIVER
  5. #define inOutInterfaceType AccelStepper::DRIVER
  6. #define stepPin_rot 2
  7. #define dirPin_rot 5
  8. #define stepPin_InOut 3
  9. #define dirPin_InOut 6
  10. #define rot_total_steps 16000.0
  11. #define inOut_total_steps 5760.0
  12. #define gearRatio 10
  13. #define BUFFER_SIZE 10 // Maximum number of theta-rho pairs in a batch
  14. #define buttonPin 11 // Z- signal pin on the CNC shield
  15. #define pot1 A1 // Potentiometer 1, Abort pin on the CNC shield
  16. #define pot2 A0 // Potentiometer 2, Hold pint on the CNC shield
  17. #define MODE_APP 0
  18. #define MODE_SPIROGRAPH 1
  19. // Create stepper motor objects
  20. AccelStepper rotStepper(rotInterfaceType, stepPin_rot, dirPin_rot);
  21. AccelStepper inOutStepper(inOutInterfaceType, stepPin_InOut, dirPin_InOut);
  22. // Create a MultiStepper object
  23. MultiStepper multiStepper;
  24. // Buffer for storing theta-rho pairs
  25. float buffer[BUFFER_SIZE][2]; // Store theta, rho pairs
  26. int bufferCount = 0; // Number of pairs in the buffer
  27. bool batchComplete = false;
  28. // Track the current position in polar coordinates
  29. float currentTheta = 0.0; // Current theta in radians
  30. float currentRho = 0.0; // Current rho (0 to 1)
  31. bool isFirstCoordinates = true;
  32. float totalRevolutions = 0.0; // Tracks cumulative revolutions
  33. float maxSpeed = 5000;
  34. float maxAcceleration = 5000;
  35. long interpolationResolution = 0.001;
  36. float userDefinedSpeed = maxSpeed; // Store user-defined speed
  37. // Running Mode
  38. int currentMode = MODE_APP; // Default mode is app mode.
  39. // FIRMWARE VERSION
  40. const char* firmwareVersion = "1.4.0";
  41. const char* motorType = "DRV8825";
  42. void setup()
  43. {
  44. // Set maximum speed and acceleration
  45. rotStepper.setMaxSpeed(maxSpeed); // Adjust as needed
  46. rotStepper.setAcceleration(maxAcceleration); // Adjust as needed
  47. inOutStepper.setMaxSpeed(maxSpeed); // Adjust as needed
  48. inOutStepper.setAcceleration(maxAcceleration); // Adjust as needed
  49. // Add steppers to MultiStepper
  50. multiStepper.addStepper(rotStepper);
  51. multiStepper.addStepper(inOutStepper);
  52. // Configure the buttons and potentiometers for Spirograph mode
  53. pinMode(buttonPin, INPUT_PULLUP); // Configure button pin with internal pull-up
  54. pinMode(A0, INPUT); // Potentiometer 1 input
  55. pinMode(A1, INPUT); // Potentiometer 2 input
  56. // Initialize serial communication
  57. Serial.begin(115200);
  58. Serial.println("Table: Dune Weaver");
  59. Serial.println("Drivers: DRV8825");
  60. Serial.println("Version: 1.4.0";)
  61. Serial.println("R");
  62. homing();
  63. }
  64. void resetTheta()
  65. {
  66. isFirstCoordinates = true; // Set flag to skip interpolation for the next movement
  67. Serial.println("THETA_RESET"); // Notify Python
  68. }
  69. void loop() {
  70. updateModeSwitch(); // Check and handle mode switching
  71. // Call the appropriate mode function based on the current mode
  72. if (currentMode == MODE_SPIROGRAPH) {
  73. spirographMode();
  74. } else if (currentMode == MODE_APP) {
  75. appMode();
  76. }
  77. }
  78. void updateModeSwitch() {
  79. // Read the current state of the latching switch
  80. bool currentSwitchState = digitalRead(buttonPin);
  81. int newMode = currentSwitchState == LOW ? MODE_SPIROGRAPH : MODE_APP;
  82. if (newMode != currentMode) {
  83. handleModeChange(newMode); // Handle mode-specific transitions
  84. currentMode = newMode; // Update the current mode
  85. }
  86. }
  87. void handleModeChange(int newMode) {
  88. // Print mode switch information
  89. if (newMode == MODE_SPIROGRAPH) {
  90. Serial.println("Spirograph Mode Active");
  91. rotStepper.setMaxSpeed(userDefinedSpeed * 0.5); // Use 50% of user-defined speed
  92. inOutStepper.setMaxSpeed(userDefinedSpeed * 0.5);
  93. } else if (newMode == MODE_APP) {
  94. Serial.println("App Mode Active");
  95. rotStepper.setMaxSpeed(userDefinedSpeed); // Restore user-defined speed
  96. inOutStepper.setMaxSpeed(userDefinedSpeed);
  97. resetTheta();
  98. }
  99. movePolar(currentTheta, 0); // Move to the center
  100. }
  101. void spirographMode() {
  102. static float currentFrequency = 2.95; // Track the current frequency (default value)
  103. static float phaseShift = 0.0; // Track the phase shift for smooth transitions
  104. // Read potentiometer for frequency adjustment
  105. int pot1Value = analogRead(pot1);
  106. float newFrequency = mapFloat(pot1Value, 0, 1023, 0.5, 6); // Map to range
  107. newFrequency = round(newFrequency * 10) / 10.0; // Round to one decimal place
  108. // Force the value to x.95 or x.10 to have a slight variation each revolution
  109. if (fmod(newFrequency, 1.0) >= 0.5) {
  110. newFrequency = floor(newFrequency) + 0.95; // Round up to x.95
  111. } else {
  112. newFrequency = floor(newFrequency) + 0.10; // Round down to x.10
  113. }
  114. // Adjust phase shift if frequency changes
  115. if (newFrequency != currentFrequency) {
  116. phaseShift += currentTheta * (currentFrequency - newFrequency);
  117. currentFrequency = newFrequency; // Update the current frequency
  118. }
  119. // Read variation knob to adjust the minimum rho
  120. int pot2Value = analogRead(pot2);
  121. float minRho = round(mapFloat(pot2Value, 0, 1023, 0, 0.5) * 20) / 20.0; // Minimum rho in steps of 0.05
  122. // Calculate amplitude and offset for the sine wave
  123. float amplitude = (1.0 - minRho) / 2.0; // Half of the oscillation range
  124. float offset = minRho + amplitude; // Center the wave within the range [minRho, 1]
  125. // Calculate the next target theta
  126. float stepSize = maxSpeed * (2 * M_PI / rot_total_steps) / 10; // Smaller steps for finer control
  127. float nextTheta = currentTheta + stepSize;
  128. // Count total revolutions
  129. totalRevolutions = (nextTheta / (2 * M_PI));
  130. // Calculate rho using the adjusted sine wave with phase shift
  131. currentRho = offset + amplitude * cos((currentTheta * currentFrequency) + phaseShift);
  132. float nextRho = offset + amplitude * cos((nextTheta * currentFrequency) + phaseShift);
  133. // Move the steppers to the calculated position
  134. movePolar(nextTheta, constrain(nextRho, 0, 1));
  135. // Update the current theta to the new position
  136. currentTheta = nextTheta;
  137. }
  138. float mapFloat(long x, long inMin, long inMax, float outMin, float outMax) {
  139. if (inMax == inMin) {
  140. Serial.println("Error: mapFloat division by zero");
  141. return outMin; // Return the minimum output value as a fallback
  142. }
  143. return (float)(x - inMin) * (outMax - outMin) / (float)(inMax - inMin) + outMin;
  144. }
  145. void appMode()
  146. {
  147. // Check for incoming serial commands or theta-rho pairs
  148. if (Serial.available() > 0)
  149. {
  150. String input = Serial.readStringUntil('\n');
  151. // Ignore invalid messages
  152. if (input != "HOME" && input != "RESET_THETA" && input != "GET_VERSION" && !input.startsWith("SET_SPEED") && !input.endsWith(";"))
  153. {
  154. Serial.print("IGNORED: ");
  155. Serial.println(input);
  156. return;
  157. }
  158. if (input == "GET_VERSION")
  159. {
  160. Serial.print(firmwareVersion);
  161. Serial.print(" | ");
  162. Serial.println(motorType);
  163. return;
  164. }
  165. if (input == "RESET_THETA")
  166. {
  167. resetTheta(); // Reset currentTheta
  168. Serial.println("THETA_RESET"); // Notify Python
  169. Serial.println("READY");
  170. return;
  171. }
  172. if (input == "HOME")
  173. {
  174. homing();
  175. return;
  176. }
  177. // Example: The user calls "SET_SPEED 60" => 60% of maxSpeed
  178. if (input.startsWith("SET_SPEED"))
  179. {
  180. // Parse out the speed value from the command string
  181. int spaceIndex = input.indexOf(' ');
  182. if (spaceIndex != -1)
  183. {
  184. String speedStr = input.substring(spaceIndex + 1);
  185. float speedPercentage = speedStr.toFloat();
  186. // Make sure the percentage is valid
  187. if (speedPercentage >= 1.0 && speedPercentage <= 100.0)
  188. {
  189. // Convert percentage to actual speed
  190. long newSpeed = (speedPercentage / 100.0) * maxSpeed;
  191. userDefinedSpeed = newSpeed;
  192. // Set the stepper speeds
  193. rotStepper.setMaxSpeed(newSpeed);
  194. inOutStepper.setMaxSpeed(newSpeed);
  195. Serial.println("SPEED_SET");
  196. Serial.println("R");
  197. }
  198. else
  199. {
  200. Serial.println("INVALID_SPEED");
  201. }
  202. }
  203. else
  204. {
  205. Serial.println("INVALID_COMMAND");
  206. }
  207. return;
  208. }
  209. // If not a command, assume it's a batch of theta-rho pairs
  210. if (!batchComplete)
  211. {
  212. int pairIndex = 0;
  213. int startIdx = 0;
  214. // Split the batch line into individual theta-rho pairs
  215. while (pairIndex < BUFFER_SIZE)
  216. {
  217. int endIdx = input.indexOf(";", startIdx);
  218. if (endIdx == -1)
  219. break; // No more pairs in the line
  220. String pair = input.substring(startIdx, endIdx);
  221. int commaIndex = pair.indexOf(',');
  222. // Parse theta and rho values
  223. float theta = pair.substring(0, commaIndex).toFloat(); // Theta in radians
  224. float rho = pair.substring(commaIndex + 1).toFloat(); // Rho (0 to 1)
  225. buffer[pairIndex][0] = theta;
  226. buffer[pairIndex][1] = rho;
  227. pairIndex++;
  228. startIdx = endIdx + 1; // Move to next pair
  229. }
  230. bufferCount = pairIndex;
  231. batchComplete = true;
  232. }
  233. }
  234. // Process the buffer if a batch is ready
  235. if (batchComplete && bufferCount > 0)
  236. {
  237. // Start interpolation from the current position
  238. float startTheta = currentTheta;
  239. float startRho = currentRho;
  240. for (int i = 0; i < bufferCount; i++)
  241. {
  242. if (isFirstCoordinates)
  243. {
  244. // Directly move to the first coordinate of the new pattern
  245. long initialRotSteps = buffer[0][0] * (rot_total_steps / (2.0 * M_PI));
  246. rotStepper.setCurrentPosition(initialRotSteps);
  247. inOutStepper.setCurrentPosition(inOutStepper.currentPosition() - totalRevolutions * rot_total_steps / gearRatio);
  248. currentTheta = buffer[0][0];
  249. totalRevolutions = 0;
  250. isFirstCoordinates = false; // Reset the flag after the first movement
  251. movePolar(buffer[0][0], buffer[0][1]);
  252. }
  253. else
  254. {
  255. // Use interpolation for subsequent movements
  256. interpolatePath(
  257. startTheta, startRho,
  258. buffer[i][0], buffer[i][1],
  259. interpolationResolution
  260. );
  261. }
  262. // Update the starting point for the next segment
  263. startTheta = buffer[i][0];
  264. startRho = buffer[i][1];
  265. }
  266. batchComplete = false; // Reset batch flag
  267. bufferCount = 0; // Clear buffer
  268. Serial.println("R");
  269. }
  270. }
  271. void homing()
  272. {
  273. Serial.println("HOMING");
  274. // Move inOutStepper inward for homing
  275. inOutStepper.setSpeed(-maxSpeed); // Adjust speed for homing
  276. while (true)
  277. {
  278. inOutStepper.runSpeed();
  279. if (inOutStepper.currentPosition() <= -inOut_total_steps * 1.1)
  280. { // Adjust distance for homing
  281. break;
  282. }
  283. }
  284. inOutStepper.setCurrentPosition(0); // Set home position
  285. currentTheta = 0.0; // Reset polar coordinates
  286. currentRho = 0.0;
  287. Serial.println("HOMED");
  288. }
  289. void movePolar(float theta, float rho)
  290. {
  291. // Convert polar coordinates to motor steps
  292. long rotSteps = theta * (rot_total_steps / (2.0 * M_PI)); // Steps for rot axis
  293. long inOutSteps = rho * inOut_total_steps; // Steps for in-out axis
  294. // Calculate offset for inOut axis
  295. float revolutions = theta / (2.0 * M_PI); // Fractional revolutions (can be positive or negative)
  296. long offsetSteps = revolutions * rot_total_steps / gearRatio; // 1600 steps inward or outward per revolution
  297. // Update the total revolutions to keep track of the offset history
  298. totalRevolutions += (theta - currentTheta) / (2.0 * M_PI);
  299. // Apply the offset to the inout axis
  300. if (!isFirstCoordinates) {
  301. inOutSteps -= offsetSteps;
  302. }
  303. // Define target positions for both motors
  304. long targetPositions[2];
  305. targetPositions[0] = rotSteps;
  306. targetPositions[1] = inOutSteps;
  307. // Move both motors synchronously
  308. multiStepper.moveTo(targetPositions);
  309. multiStepper.runSpeedToPosition(); // Blocking call
  310. // Update the current coordinates
  311. currentTheta = theta;
  312. currentRho = rho;
  313. }
  314. void interpolatePath(float startTheta, float startRho, float endTheta, float endRho, float stepSize)
  315. {
  316. // Calculate the total distance in the polar coordinate system
  317. float distance = sqrt(pow(endTheta - startTheta, 2) + pow(endRho - startRho, 2));
  318. int numSteps = max(1, (int)(distance / stepSize)); // Ensure at least one step
  319. for (int step = 0; step <= numSteps; step++)
  320. {
  321. float t = (float)step / numSteps; // Interpolation factor (0 to 1)
  322. float interpolatedTheta = startTheta + t * (endTheta - startTheta);
  323. float interpolatedRho = startRho + t * (endRho - startRho);
  324. // Move to the interpolated theta-rho
  325. movePolar(interpolatedTheta, interpolatedRho);
  326. }
  327. }