| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394 |
- #include <AccelStepper.h>
- #include <MultiStepper.h>
- #include <math.h> // For M_PI and mathematical operations
- #define rotInterfaceType AccelStepper::DRIVER
- #define inOutInterfaceType AccelStepper::DRIVER
- #define stepPin_rot 2
- #define dirPin_rot 5
- #define stepPin_InOut 3
- #define dirPin_InOut 6
- #define rot_total_steps 16000.0
- #define inOut_total_steps 5760.0
- #define gearRatio 10
- #define BUFFER_SIZE 10 // Maximum number of theta-rho pairs in a batch
- #define buttonPin 11 // Z- signal pin on the CNC shield
- #define pot1 A1 // Potentiometer 1, Abort pin on the CNC shield
- #define pot2 A0 // Potentiometer 2, Hold pint on the CNC shield
- #define MODE_APP 0
- #define MODE_SPIROGRAPH 1
- // Create stepper motor objects
- AccelStepper rotStepper(rotInterfaceType, stepPin_rot, dirPin_rot);
- AccelStepper inOutStepper(inOutInterfaceType, stepPin_InOut, dirPin_InOut);
- // Create a MultiStepper object
- MultiStepper multiStepper;
- // Buffer for storing theta-rho pairs
- float buffer[BUFFER_SIZE][2]; // Store theta, rho pairs
- int bufferCount = 0; // Number of pairs in the buffer
- bool batchComplete = false;
- // Track the current position in polar coordinates
- float currentTheta = 0.0; // Current theta in radians
- float currentRho = 0.0; // Current rho (0 to 1)
- bool isFirstCoordinates = true;
- float totalRevolutions = 0.0; // Tracks cumulative revolutions
- long maxSpeed = 1000;
- float maxAcceleration = 50;
- long interpolationResolution = 0.001;
- float userDefinedSpeed = maxSpeed; // Store user-defined speed
- // Running Mode
- int currentMode = MODE_APP; // Default mode is app mode.
- // FIRMWARE VERSION
- const char* firmwareVersion = "1.4.0";
- const char* motorType = "TMC2209";
- void setup()
- {
- // Set maximum speed and acceleration
- rotStepper.setMaxSpeed(maxSpeed); // Adjust as needed
- rotStepper.setAcceleration(maxAcceleration); // Adjust as needed
- inOutStepper.setMaxSpeed(maxSpeed); // Adjust as needed
- inOutStepper.setAcceleration(maxAcceleration); // Adjust as needed
- // Add steppers to MultiStepper
- multiStepper.addStepper(rotStepper);
- multiStepper.addStepper(inOutStepper);
- // Configure the buttons and potentiometers for Spirograph mode
- pinMode(buttonPin, INPUT_PULLUP); // Configure button pin with internal pull-up
- pinMode(A0, INPUT); // Potentiometer 1 input
- pinMode(A1, INPUT); // Potentiometer 2 input
- // Initialize serial communication
- Serial.begin(115200);
- Serial.println("R");
- homing();
- }
- void getVersion()
- {
- Serial.println("Table: Dune Weaver");
- Serial.println("Drivers: TMC2209");
- Serial.println("Version: 1.4.0");
- }
- void resetTheta()
- {
- isFirstCoordinates = true; // Set flag to skip interpolation for the next movement
- Serial.println("THETA_RESET"); // Notify Python
- }
- void loop() {
- updateModeSwitch(); // Check and handle mode switching
- // Call the appropriate mode function based on the current mode
- if (currentMode == MODE_SPIROGRAPH) {
- spirographMode();
- } else if (currentMode == MODE_APP) {
- appMode();
- }
- }
- void updateModeSwitch() {
- // Read the current state of the latching switch
- bool currentSwitchState = digitalRead(buttonPin);
- int newMode = currentSwitchState == LOW ? MODE_SPIROGRAPH : MODE_APP;
- if (newMode != currentMode) {
- handleModeChange(newMode); // Handle mode-specific transitions
- currentMode = newMode; // Update the current mode
- }
- }
- void handleModeChange(int newMode) {
- // Print mode switch information
- if (newMode == MODE_SPIROGRAPH) {
- Serial.println("Spirograph Mode Active");
- rotStepper.setMaxSpeed(userDefinedSpeed * 0.5); // Use 50% of user-defined speed
- inOutStepper.setMaxSpeed(userDefinedSpeed * 0.5);
- isFirstCoordinates = false;
- } else if (newMode == MODE_APP) {
- Serial.println("App Mode Active");
- rotStepper.setMaxSpeed(userDefinedSpeed); // Restore user-defined speed
- inOutStepper.setMaxSpeed(userDefinedSpeed);
- resetTheta();
- }
- movePolar(currentTheta, 0); // Move to the center
- }
- void spirographMode() {
- static float currentFrequency = 2.95; // Track the current frequency (default value)
- static float phaseShift = 0.0; // Track the phase shift for smooth transitions
- // Read potentiometer for frequency adjustment
- int pot1Value = analogRead(pot1);
- float newFrequency = mapFloat(pot1Value, 0, 1023, 0.5, 6); // Map to range
- newFrequency = round(newFrequency * 10) / 10.0; // Round to one decimal place
- // Force the value to x.95 or x.10 to have a slight variation each revolution
- if (fmod(newFrequency, 1.0) >= 0.5) {
- newFrequency = floor(newFrequency) + 0.95; // Round up to x.95
- } else {
- newFrequency = floor(newFrequency) + 0.10; // Round down to x.10
- }
- // Adjust phase shift if frequency changes
- if (newFrequency != currentFrequency) {
- phaseShift += currentTheta * (currentFrequency - newFrequency);
- currentFrequency = newFrequency; // Update the current frequency
- }
- // Read variation knob to adjust the minimum rho
- int pot2Value = analogRead(pot2);
- float minRho = round(mapFloat(pot2Value, 0, 1023, 0, 0.5) * 20) / 20.0; // Minimum rho in steps of 0.05
- // Calculate amplitude and offset for the sine wave
- float amplitude = (1.0 - minRho) / 2.0; // Half of the oscillation range
- float offset = minRho + amplitude; // Center the wave within the range [minRho, 1]
- // Calculate the next target theta
- float stepSize = maxSpeed * (2 * M_PI / rot_total_steps) / 10; // Smaller steps for finer control
- float nextTheta = currentTheta + stepSize;
- // Count total revolutions
- totalRevolutions = (nextTheta / (2 * M_PI));
- // Calculate rho using the adjusted sine wave with phase shift
- currentRho = offset + amplitude * cos((currentTheta * currentFrequency) + phaseShift);
- float nextRho = offset + amplitude * cos((nextTheta * currentFrequency) + phaseShift);
- // Move the steppers to the calculated position
- movePolar(nextTheta, constrain(nextRho, 0, 1));
- // Update the current theta to the new position
- currentTheta = nextTheta;
- }
- float mapFloat(long x, long inMin, long inMax, float outMin, float outMax) {
- if (inMax == inMin) {
- Serial.println("Error: mapFloat division by zero");
- return outMin; // Return the minimum output value as a fallback
- }
- return (float)(x - inMin) * (outMax - outMin) / (float)(inMax - inMin) + outMin;
- }
- void appMode()
- {
- // Check for incoming serial commands or theta-rho pairs
- if (Serial.available() > 0)
- {
- String input = Serial.readStringUntil('\n');
- // Ignore invalid messages
- if (input != "HOME" && input != "RESET_THETA" && input != "GET_VERSION" && !input.startsWith("SET_SPEED") && !input.endsWith(";"))
- {
- Serial.print("IGNORED: ");
- Serial.println(input);
- return;
- }
- if (input == "GET_VERSION") {
- getVersion();
- }
- if (input == "RESET_THETA")
- {
- resetTheta(); // Reset currentTheta
- Serial.println("THETA_RESET"); // Notify Python
- Serial.println("READY");
- return;
- }
- if (input == "HOME")
- {
- homing();
- return;
- }
- if (input.startsWith("SET_SPEED"))
- {
- // Parse out the speed value from the command string
- int spaceIndex = input.indexOf(' ');
- if (spaceIndex != -1)
- {
- String speedStr = input.substring(spaceIndex + 1);
- float speedPercentage = speedStr.toFloat();
- // Make sure the percentage is valid
- if (speedPercentage >= 1.0 && speedPercentage <= 100.0)
- {
- // Convert percentage to actual speed
- long newSpeed = (speedPercentage / 100.0) * maxSpeed;
- userDefinedSpeed = newSpeed;
- // Set the stepper speeds
- rotStepper.setMaxSpeed(newSpeed);
- inOutStepper.setMaxSpeed(newSpeed);
- Serial.println("SPEED_SET");
- }
- else
- {
- Serial.println("INVALID_SPEED");
- }
- }
- else
- {
- Serial.println("INVALID_COMMAND");
- }
- return;
- }
- // If not a command, assume it's a batch of theta-rho pairs
- if (!batchComplete)
- {
- int pairIndex = 0;
- int startIdx = 0;
- // Split the batch line into individual theta-rho pairs
- while (pairIndex < BUFFER_SIZE)
- {
- int endIdx = input.indexOf(";", startIdx);
- if (endIdx == -1)
- break; // No more pairs in the line
- String pair = input.substring(startIdx, endIdx);
- int commaIndex = pair.indexOf(',');
- // Parse theta and rho values
- float theta = pair.substring(0, commaIndex).toFloat(); // Theta in radians
- float rho = pair.substring(commaIndex + 1).toFloat(); // Rho (0 to 1)
- buffer[pairIndex][0] = theta;
- buffer[pairIndex][1] = rho;
- pairIndex++;
- startIdx = endIdx + 1; // Move to next pair
- }
- bufferCount = pairIndex;
- batchComplete = true;
- }
- }
- // Process the buffer if a batch is ready
- if (batchComplete && bufferCount > 0)
- {
- // Start interpolation from the current position
- float startTheta = currentTheta;
- float startRho = currentRho;
- for (int i = 0; i < bufferCount; i++)
- {
- if (isFirstCoordinates)
- {
- // Directly move to the first coordinate of the new pattern
- long initialRotSteps = buffer[0][0] * (rot_total_steps / (2.0 * M_PI));
- rotStepper.setCurrentPosition(initialRotSteps);
- inOutStepper.setCurrentPosition(inOutStepper.currentPosition() + (totalRevolutions * rot_total_steps / gearRatio));
- currentTheta = buffer[0][0];
- totalRevolutions = 0;
- movePolar(buffer[0][0], buffer[0][1]);
- isFirstCoordinates = false; // Reset the flag after the first movement
- }
- else
- {
- // Use interpolation for subsequent movements
- interpolatePath(
- startTheta, startRho,
- buffer[i][0], buffer[i][1],
- interpolationResolution
- );
- }
- // Update the starting point for the next segment
- startTheta = buffer[i][0];
- startRho = buffer[i][1];
- }
- batchComplete = false; // Reset batch flag
- bufferCount = 0; // Clear buffer
- Serial.println("R");
- }
- }
- void homing()
- {
- Serial.println("HOMING");
- // Move inOutStepper inward for homing
- inOutStepper.setSpeed(-maxSpeed); // Adjust speed for homing
- while (true)
- {
- inOutStepper.runSpeed();
- if (inOutStepper.currentPosition() <= -inOut_total_steps * 1.1)
- { // Adjust distance for homing
- break;
- }
- }
- inOutStepper.setCurrentPosition(0); // Set home position
- currentTheta = 0.0; // Reset polar coordinates
- currentRho = 0.0;
- Serial.println("HOMED");
- }
- void movePolar(float theta, float rho)
- {
- // Convert polar coordinates to motor steps
- long rotSteps = theta * (rot_total_steps / (2.0 * M_PI)); // Steps for rot axis
- long inOutSteps = rho * inOut_total_steps; // Steps for in-out axis
- // Calculate offset for inOut axis
- float revolutions = theta / (2.0 * M_PI); // Fractional revolutions (can be positive or negative)
- long offsetSteps = revolutions * rot_total_steps / gearRatio; // 1600 steps inward or outward per revolution
- // Update the total revolutions to keep track of the offset history
- totalRevolutions += (theta - currentTheta) / (2.0 * M_PI);
- // Apply the offset to the inout axis
- if (!isFirstCoordinates) {
- inOutSteps -= offsetSteps;
- }
- // Define target positions for both motors
- long targetPositions[2];
- targetPositions[0] = rotSteps;
- targetPositions[1] = inOutSteps;
- // Move both motors synchronously
- multiStepper.moveTo(targetPositions);
- multiStepper.runSpeedToPosition(); // Blocking call
- // Update the current coordinates
- currentTheta = theta;
- currentRho = rho;
- }
- void interpolatePath(float startTheta, float startRho, float endTheta, float endRho, float stepSize)
- {
- // Calculate the total distance in the polar coordinate system
- float distance = sqrt(pow(endTheta - startTheta, 2) + pow(endRho - startRho, 2));
- int numSteps = max(1, (int)(distance / stepSize)); // Ensure at least one step
- for (int step = 0; step <= numSteps; step++)
- {
- float t = (float)step / numSteps; // Interpolation factor (0 to 1)
- float interpolatedTheta = startTheta + t * (endTheta - startTheta);
- float interpolatedRho = startRho + t * (endRho - startRho);
- // Move to the interpolated theta-rho
- movePolar(interpolatedTheta, interpolatedRho);
- }
- }
|