esp32.ino 8.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266
  1. #include <AccelStepper.h>
  2. #include <MultiStepper.h>
  3. #include <math.h> // For M_PI and mathematical operations
  4. #define rotInterfaceType AccelStepper::DRIVER
  5. #define inOutInterfaceType AccelStepper::DRIVER
  6. #define ROT_PIN1 14
  7. #define ROT_PIN2 12
  8. #define ROT_PIN3 26
  9. #define ROT_PIN4 27
  10. #define INOUT_PIN1 16
  11. #define INOUT_PIN2 17
  12. #define INOUT_PIN3 18
  13. #define INOUT_PIN4 19
  14. #define rot_total_steps 12800
  15. #define inOut_total_steps 4642
  16. // #define inOut_total_steps 4660
  17. const double gearRatio = 100.0f / 16.0f;
  18. #define BUFFER_SIZE 10 // Maximum number of theta-rho pairs in a batch
  19. // Create stepper motor objects
  20. AccelStepper rotStepper(AccelStepper::FULL4WIRE, ROT_PIN1, ROT_PIN3, ROT_PIN2, ROT_PIN4); // Rot axis
  21. AccelStepper inOutStepper(AccelStepper::FULL4WIRE, INOUT_PIN1, INOUT_PIN3, INOUT_PIN2, INOUT_PIN4); // In-out axis
  22. // Create a MultiStepper object
  23. MultiStepper multiStepper;
  24. // Buffer for storing theta-rho pairs
  25. double buffer[BUFFER_SIZE][2]; // Store theta, rho pairs
  26. int bufferCount = 0; // Number of pairs in the buffer
  27. bool batchComplete = false;
  28. // Track the current position in polar coordinates
  29. double currentTheta = 0.0; // Current theta in radians
  30. double currentRho = 0.0; // Current rho (0 to 1)
  31. bool isFirstCoordinates = true;
  32. double totalRevolutions = 0.0; // Tracks cumulative revolutions
  33. double maxSpeed = 500;
  34. double maxAcceleration = 5000;
  35. double subSteps = 1;
  36. int modulus(int x, int y) {
  37. return x < 0 ? ((x + 1) % y) + y - 1 : x % y;
  38. }
  39. void setup()
  40. {
  41. // Set maximum speed and acceleration
  42. rotStepper.setMaxSpeed(maxSpeed); // Adjust as needed
  43. rotStepper.setAcceleration(maxAcceleration); // Adjust as needed
  44. inOutStepper.setMaxSpeed(maxSpeed); // Adjust as needed
  45. inOutStepper.setAcceleration(maxAcceleration); // Adjust as needed
  46. // Add steppers to MultiStepper
  47. multiStepper.addStepper(rotStepper);
  48. multiStepper.addStepper(inOutStepper);
  49. // Initialize serial communication
  50. Serial.begin(115200);
  51. Serial.println("R");
  52. homing();
  53. }
  54. void loop()
  55. {
  56. // Check for incoming serial commands or theta-rho pairs
  57. if (Serial.available() > 0)
  58. {
  59. String input = Serial.readStringUntil('\n');
  60. // Ignore invalid messages
  61. if (input != "HOME" && input != "RESET_THETA" && !input.startsWith("SET_SPEED") && !input.endsWith(";"))
  62. {
  63. Serial.println("IGNORED");
  64. return;
  65. }
  66. // Example: The user calls "SET_SPEED 60" => 60% of maxSpeed
  67. if (input.startsWith("SET_SPEED"))
  68. {
  69. // Parse out the speed value from the command string
  70. int spaceIndex = input.indexOf(' ');
  71. if (spaceIndex != -1)
  72. {
  73. String speedStr = input.substring(spaceIndex + 1);
  74. float speedPercentage = speedStr.toFloat();
  75. // Make sure the percentage is valid
  76. if (speedPercentage >= 1.0 && speedPercentage <= 100.0)
  77. {
  78. // Convert percentage to actual speed
  79. long newSpeed = (speedPercentage / 100.0) * maxSpeed;
  80. // Set the stepper speeds
  81. rotStepper.setMaxSpeed(newSpeed);
  82. inOutStepper.setMaxSpeed(newSpeed);
  83. Serial.println("SPEED_SET");
  84. Serial.println("R");
  85. }
  86. else
  87. {
  88. Serial.println("INVALID_SPEED");
  89. }
  90. }
  91. else
  92. {
  93. Serial.println("INVALID_COMMAND");
  94. }
  95. return;
  96. }
  97. if (input == "HOME")
  98. {
  99. homing();
  100. return;
  101. }
  102. if (input == "RESET_THETA")
  103. {
  104. isFirstCoordinates = true;
  105. currentTheta = 0;
  106. currentRho = 0;
  107. Serial.println("THETA_RESET"); // Notify Python
  108. Serial.println("R");
  109. return;
  110. }
  111. // If not a command, assume it's a batch of theta-rho pairs
  112. if (!batchComplete)
  113. {
  114. int pairIndex = 0;
  115. int startIdx = 0;
  116. // Split the batch line into individual theta-rho pairs
  117. while (pairIndex < BUFFER_SIZE)
  118. {
  119. int endIdx = input.indexOf(";", startIdx);
  120. if (endIdx == -1)
  121. break; // No more pairs in the line
  122. String pair = input.substring(startIdx, endIdx);
  123. int commaIndex = pair.indexOf(',');
  124. // Parse theta and rho values
  125. double theta = pair.substring(0, commaIndex).toDouble(); // Theta in radians
  126. double rho = pair.substring(commaIndex + 1).toDouble(); // Rho (0 to 1)
  127. buffer[pairIndex][0] = theta;
  128. buffer[pairIndex][1] = rho;
  129. pairIndex++;
  130. startIdx = endIdx + 1; // Move to next pair
  131. }
  132. bufferCount = pairIndex;
  133. batchComplete = true;
  134. }
  135. }
  136. // Process the buffer if a batch is ready
  137. if (batchComplete && bufferCount > 0)
  138. {
  139. rotStepper.enableOutputs();
  140. inOutStepper.enableOutputs();
  141. // Start interpolation from the current position
  142. double startTheta = currentTheta;
  143. double startRho = currentRho;
  144. if (isFirstCoordinates) {
  145. homing();
  146. isFirstCoordinates = false;
  147. }
  148. for (int i = 0; i < bufferCount; i++)
  149. {
  150. interpolatePath(
  151. startTheta, startRho,
  152. buffer[i][0], buffer[i][1],
  153. subSteps
  154. );
  155. // Update the starting point for the next segment
  156. startTheta = buffer[i][0];
  157. startRho = buffer[i][1];
  158. }
  159. rotStepper.disableOutputs();
  160. inOutStepper.disableOutputs();
  161. batchComplete = false; // Reset batch flag
  162. bufferCount = 0; // Clear buffer
  163. Serial.println("R");
  164. }
  165. }
  166. void homing()
  167. {
  168. Serial.println("HOMING");
  169. inOutStepper.enableOutputs();
  170. // Move inOutStepper inward for homing
  171. inOutStepper.setSpeed(-maxSpeed); // Adjust speed for homing
  172. long currentInOut = inOutStepper.currentPosition();
  173. while (true)
  174. {
  175. inOutStepper.runSpeed();
  176. if (inOutStepper.currentPosition() <= currentInOut - inOut_total_steps * 1.1)
  177. { // Adjust distance for homing
  178. break;
  179. }
  180. }
  181. inOutStepper.setCurrentPosition(0); // Set home position
  182. rotStepper.setCurrentPosition(0);
  183. currentTheta = 0.0; // Reset polar coordinates
  184. currentRho = 0.0;
  185. inOutStepper.disableOutputs();
  186. Serial.println("HOMED");
  187. }
  188. void movePolar(double theta, double rho)
  189. {
  190. if (rho < 0.0)
  191. rho = 0.0;
  192. else if (rho > 1.0)
  193. rho = 1.0;
  194. long rotSteps = lround(theta * (rot_total_steps / (2.0f * M_PI)));
  195. double revolutions = theta / (2.0 * M_PI);
  196. long offsetSteps = lround(revolutions * (rot_total_steps / gearRatio));
  197. // Now inOutSteps is always derived from the absolute rho, not incrementally
  198. long inOutSteps = lround(rho * inOut_total_steps);
  199. inOutSteps -= offsetSteps;
  200. long targetPositions[2] = {rotSteps, inOutSteps};
  201. multiStepper.moveTo(targetPositions);
  202. multiStepper.runSpeedToPosition(); // Blocking call
  203. // Update current coordinates
  204. currentTheta = theta;
  205. currentRho = rho;
  206. }
  207. void interpolatePath(double startTheta, double startRho, double endTheta, double endRho, double subSteps)
  208. {
  209. // Calculate the total distance in the polar coordinate system
  210. double distance = sqrt(pow(endTheta - startTheta, 2) + pow(endRho - startRho, 2));
  211. long numSteps = max(1, (int)(distance / subSteps)); // Ensure at least one step
  212. for (long step = 0; step <= numSteps; step++)
  213. {
  214. double t = (double)step / numSteps; // Interpolation factor (0 to 1)
  215. double interpolatedTheta = startTheta + t * (endTheta - startTheta);
  216. double interpolatedRho = startRho + t * (endRho - startRho);
  217. // Move to the interpolated theta-rho
  218. movePolar(interpolatedTheta, interpolatedRho);
  219. }
  220. }